Abstract

BackgroundBrugia malayi is a nematode parasite that causes lymphatic filariasis, a disfiguring and disabiling tropical disease. Although a first draft genome sequence was released in 2007, very little is understood about transcription programs that govern developmental changes required for the parasite’s development and survival in its mammalian and insect hosts.ResultsWe used a microarray with probes that represent some 85% of predicted genes to generate gene expression profiles for seven parasite life cycle stages/sexes. Approximately 41% of transcripts with detectable expression signals were differentially expressed across lifecycle stages. Twenty-six percent of transcripts were exclusively expressed in a single parasite stage, and 27% were expressed in all stages studied. K-means clustering of differentially expressed transcripts revealed five major transcription patterns that were associated with parasite lifecycle stages or gender. Examination of known stage-associated transcripts validated these data sets and suggested that newly identified stage or gender-associated transcripts may exercise biological functions in development and reproduction. The results also indicate that genes with similar transcription patterns were often involved in similar functions or cellular processes. For example, nuclear receptor family gene transcripts were upregulated in gene expression pattern four (female-enriched) while protein kinase gene family transcripts were upregulated in expression pattern five (male-enriched). We also used pair-wise comparisons to identify transcriptional changes between life cycle stages and sexes.ConclusionsAnalysis of gene expression patterns of lifecycle in B. malayi has provided novel insights into the biology of filarial parasites. Proteins encoded by stage-associated and/or stage-specific transcripts are likely to be critically important for key parasite functions such as establishment and maintenance of infection, development, reproduction, and survival in the host. Some of these may be useful targets for vaccines or new drug treatments for filariasis.

Highlights

  • Brugia malayi is a nematode parasite that causes lymphatic filariasis, a disfiguring and disabiling tropical disease

  • We have provided detailed information on global transcriptional profiles for seven B. malayi lifecycle stages: infective L3 directly from vector mosquitoes, and several stages collected from a mammalian host (Mf, L4, immature male and female worms (6 week post infection female (6WF) and male (6WM) and mature male (AM) and female worms (AF)

  • The percentage of expressed transcripts was higher for B. malayi transcripts (~64%) than for W. bancrofti (~61%), O. volvulus (~56%) or Wolbachia (~9%) transcripts

Read more

Summary

Introduction

Brugia malayi is a nematode parasite that causes lymphatic filariasis, a disfiguring and disabiling tropical disease. While L3 are developmentally arrested in mosquitoes, they resume development after entering a suitable vertebrate host, and this leads to a molt to the fourth larval larval stage (L4) after approximately 10 days. While changes in morphology across the life cycle of filarial worms are well documented [4], relatively little is known about the biochemical pathways and molecular processes that accompany these developmental changes. Since many of these pathways and processes must be essential for the survival of these parasites, further research in this area may lead to identification of new targets for rational design of vaccines and drugs

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call