Abstract
Some biochemical systems show oscillation. They often consist of feedback loops with repressive transcription regulation. Such biochemical systems have distinctive characteristics in comparison with ordinary chemical systems: i) numbers of molecules involved are small, ii) there are typically only a couple of genes in a cell with a finite regulation time. Due to the fluctuations caused by these features, the system behavior can be quite different from the one by deterministic rate equations, because the rate equations ignore molecular fluctuations and thus are exact only in the infinite molecular number limit. The molecular fluctuations on a free-running circadian system have been studied by Gonze et al. (2002) by introducing a scale parameter for the system size. They consider, however, only the first effect, assuming that the gene process is fast enough for the second effect to be ignored, but this has not been examined systematically yet. Here we study fluctuation effects due to the finite gene regulation time by introducing a new scale parameter , which we take as the unbinding time of a nuclear protein from the gene. We focus on the case where the fluctuations due to small molecular numbers are negligible. In simulations on the same system studied by Gonze et al., we find the system is unexpectedly sensitive to the fluctuation in the transcription regulation; the period of oscillation fluctuates about 30 min even when the regulation time scale is around 30 s, that is even smaller than 1/1000 of its circadian period. We also demonstrate that the distribution width for the oscillation period and amplitude scales with , and the correlation time scales with in the small regime. The relative fluctuations for the period are about half of that for the amplitude, namely, the periodicity is more stable than the amplitude.
Highlights
One of the outstanding features in biological systems is that the systems often operate on surprisingly small numbers of active molecules, yet they seem to work quite reliably
Its biochemical mechanisms have been proposed in several systems [8,9,10], and most of them are based on a time-delayed negative feedback loop of a biochemical reaction network which includes transcription regulations
We have examined the effects of molecular fluctuations in a biological system on a simplified model of a circadian rhythm system, where there are two types of fluctuation sources: (i) small numbers of molecules involved and (ii) finite time scale of the gene regulation
Summary
One of the outstanding features in biological systems is that the systems often operate on surprisingly small numbers of active molecules, yet they seem to work quite reliably. The effects of molecular fluctuations on the circadian system has been studied by [12,13] by Monte Carlo simulations using the Gillespie method [14,15] with the scale parameter V for the molecular numbers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have