Abstract
Transcriptional gene silencing is mediated by various epigenetic modifications including DNA methylation, histone modifications and recruitment of binding proteins that reads the methyl and other modification marks. The order in which these modifications occur followed by repressor protein recruitment remains contentious. Here, using purified protein components, we show that mammalian RNA polymerase II (RNA Pol II) is involved in DNA methylation control. DNA (cytosine-5) methyltransferase 1 (DNMT1) colocalizes, directly interacts and binds to the phosphorylated C-terminal repeat domain (CTD) of Rpb1, a major structural subunit of RNA Pol II. The association of RNA Pol II with DNMT1 during transcription enhances DNA methylation, and methylated DNA doesn’t affect in vitro transcription. Addition of methyl CpG binding protein 2 (MeCP2), inhibited in vitro transcription of DNA in a methylation dependent manner, suggesting a possible mechanism for RNA Pol II coupled transcriptional silencing mediated by DNMT1 and MeCP2. Keywords: DNA methylation, DNMT1, RNA Pol II, transcription, MeCP2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.