Abstract

Objective: To explore Zn2+ deficiency-induced neuronal injury in relation to DNA methylation, providing valuable data and basic information for clarifying the mechanism of Zn2+ deficiency-induced neuronal injury.Methods: Cultured hippocampal neurons were exposed to the cell membrane-permeant Zn2+ chelator N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) (2 μM), and to TPEN (2 μM) plus ZnSO4 (5 μM) for 24 hours. We analyzed intracellular Zn2+ levels, neuronal viability, and protein/mRNA levels for DNA (cytosine-5) methyltransferase 1 (DNMT1), DNA (cytosine-5-) methyltransferase 3 alpha (DNMT3a), methyl CpG binding protein 2 (MeCP2), Brain-derived neurotrophic factor (BDNF), and growth arrest and DNA-damage-inducible, beta (GADD45b) in the treated neurons.Results: We found that exposure of hippocampal neurons to TPEN (2 μM) for 24 hours significantly reduced intracellular Zn2+ concentration and neuronal viability. Furthermore, DNMT3a, DNMT1, BDNF, and GADD45b protein levels in TPEN-treated neurons were significantly downregulated, whereas MeCP2 levels were, as expected, upregulated. In addition, DNMT3a and DNMT1 mRNA levels in TPEN-treated neurons were downregulated, while MeCP2, GADD45b, and BDNF mRNA were largely upregulated. Addition of ZnSO4 (5 μM) almost completely reversed the TPEN-induced alterations.Conclusion: Our data suggest that free Zn2+ deficiency-induced hippocampal neuronal injury correlates with free Zn2+ deficiency-induced changes in methylation-related protein gene expression including DNMT3a/DNMT1/MeCP2 and GADD45b, as well as BDNF gene expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.