Abstract
In this work, we address the question of the impossibility of certain single-letter formulas by exploiting the semi-algebraic nature of various entropy-constrained sets. The focus lies on studying the properties of the level sets of relative entropy, mutual information, and Rényi entropies. We analyze the transcendental structure of the set of states in which one of the aforementioned entropy quantities is fixed. Our results rule out (semi)algebraic single-shot characterizations of these entropy measures with bounded ancilla for both the classical and quantum cases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have