Abstract
Ultra-reliable low-latency communication (URLLC) is one of the most important components in the fifth generation (5G) cellular networks for realizing mission-critical applications. In this paper, we jointly optimize the transceiver design and decoding error probability (DEP) of a full-duplex (FD) URLLC system, where the base station (BS) operates in FD mode, while the uplink (UL) and downlink (DL) users work in half-duplex (HD) mode. Accordingly, an optimization problem is formulated to maximize the achievable total (UL plus DL) rate for an FD URLLC system under finite blocklength, subject to the end-to-end (E2E) reliability constraint from the UL user to each DL user and the total transmission power constraint at the UL user and at the BS. We analyze the problem structure and convexify the problem by approximating the channel dispersion in scenarios of high and mid-to-high signal-to-interference plus noise ratio (SINR) regimes, respectively. Next, efficient iterative algorithms are proposed to find the near-optimal power allocation for the UL user and transceiver weights for the BS. Furthermore, closed-form expressions of the transceiver weights are derived, and the convergence of the proposed algorithms is proved. Simulation examples demonstrate the impact of the code blocklength, number of DL users, transmitter/receiver distortion and DEP threshold on the system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.