Abstract

This study proposes a new trans-scale dynamic shear-lag model that integrates the strain gradient linear viscoelasticity theory to investigate the effects of size and viscous softening on the dynamic mechanical properties and energy absorption characteristics of fiber-reinforced composites with micro- and nano-structures. The proposed model clarifies how the strain gradient effect can decrease energy dissipation in the matrix. Our investigation suggests that both classical and higher-order viscosities of the submicron-scale matrix can synergistically optimize energy dissipation. Furthermore, parametric studies demonstrate that the attenuation efficiency of absorbed energy changes non-monotonically with microstructure and constituent properties, such as matrix thickness, strain gradient elasticity parameter, classical viscosity, and high-order viscosity. The trans-scale dynamic shear-lag model advances our understanding of the energy dissipation in the submicron-scale viscoelastic matrix of fiber-reinforced composites and provides valuable guidance for developing composites with micro- and nano-structures that display exceptional dynamic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.