Abstract

This study aimed to determine the antibacterial mechanism of cinnamaldehyde fumigation in Escherichia coli (E. coli). Through vapour fumigation, cinnamaldehyde was confirmed to exhibit effective antibacterial activity against E. coli. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) were 0.25 μL/mL and 0.5 μL/mL, respectively. Based on transmission electron microscopy, the wrinkled bacterial cells observed after fumigation could be related to the leakage of intracellular substances. Laser tweezers Raman spectroscopy revealed changes in the main chain of proteins, the hydrogen bond system and spatial structure, and single- and double-stranded DNA breaks. In addition, breakage of the fatty acyl chain backbone was found to affect the vertical order degree of the lipid bilayer and cell membrane fluidity, thereby inhibiting the growth of E. coli. Overall, our findings indicate that cinnamaldehyde fumigation inhibits E. coli growth by inducing changes in intracellular biological macromolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.