Abstract

In this paper, a novel hybrid coordinated control scheme is proposed for robotic systems with full-state constraints. Asymmetric barrier Lyapunov functions (ABLFs) in backstepping design procedure are employed and corresponding backstepping controller is presented to prevent full-state constraints violation. Energy-based Hamilton control is utilized to provide Hamilton controller. Hybrid control method, which includes both backstepping and Hamilton control, is considered for improving asymptotic position tracking performance. Asymptotically stability of the closed-loop system is analyzed in Lyapunov sense. It is shown that proposed hybrid controller can effectively enhance response speed and tracking accuracy while ensuring that full-state constraints are not violated. Simulation example is provided to illustrate the feasibility and advantage of control algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call