Abstract

We investigate Lee-Yang zeros of generating functions of dynamical observables and establish a general relation between phase transitions in ensembles of trajectories of stochastic many-body systems and the time evolution of high-order cumulants of such observables. This connects dynamical free energies for full counting statistics in the long-time limit, which can be obtained via large-deviation methods and whose singularities indicate dynamical phase transitions, to observables that are directly accessible in simulation and experiment. As an illustration, we consider facilitated spin models of glasses and show that from the short-time behavior of high-order cumulants, it is possible to infer the existence and location of dynamical or "space-time" transitions in these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.