Abstract

This paper presents research on the application of trajectory design, optimization, and control to an orbital transfer from Mars–Phobos Distant Retrograde Orbits to the surface of Phobos. Given a Distant Retrograde Orbit and a landing location on the surface of Phobos, landing trajectories for which total Δv for a direct 2-burn maneuver is minimized are computed. This is accomplished through the use of Particle Swarm Optimization in which the required Δv and time of flight are optimization parameters. The non-uniform gravitational environment of Phobos is considered in the computation. Results show how direct transfers can be achieved with Δv on the order of ∼30 m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.