Abstract
Since Pauli’s hypothesis of their existence in 1930, neutrinos never ceased to bring into play novel ideas and to add new pieces of physics in the whole picture of fundamental interactions. They are only weakly interacting and, at odds with Standard Model’s predictions, have a mass less than one millionth of the electron mass, which makes the investigation of their properties very challenging. The issue of the measurement of neutrino’s rest mass gained a wider and wider consensus since its discovery through neutrino oscillations in 1998. Various neutrino sources are available for experiments, ranging from nuclear collisions of cosmic rays in the Earth atmosphere and supernova explosions to neutrino beams produced by accelerators and power reactors. These suggest different approaches to the experimental detection and measurement of the absolute value of the neutrino mass. In this paper, we retrace the intriguing story of this endeavor, focusing mainly on direct mass determination methods. The puzzling issue of the nature of massive neutrinos is addressed as well with explicit reference to the phenomenon of double beta-decay as a viable experimental tool to discriminate between Dirac’s and Majorana’s nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.