Abstract
On-the-fly quasi-classical trajectory calculations using the density functional method were carried out to investigate the dynamics of the HC(O)CO radical, formed by OH radical- and Cl atom-initiated reactions of glyoxal at 298 K. The energy difference between the A' HC(O)CO radical, formed immediately after H atom abstraction, and the most stable A″ HC(O)CO radical is estimated to be 6.0 kcal mol(-1). The surplus energy followed by relaxation from A' HC(O)CO to A″ HC(O)CO goes to internal energy of the nascent HC(O)CO radicals and causes prompt decomposition into HCO + CO. The average internal energy partitioned into the HC(O)CO radical is higher in the OH reaction than in the Cl reaction, in accordance with exothermicity of the reactions. A fraction of the nascent HC(O)CO radicals (91% for the OH reaction and 47% for the Cl reaction) promptly decomposes into HCO and CO within 2.5 ps. The remaining HC(O)CO radicals, which do not undergo prompt decomposition, decompose thermally or add with O(2) in the presence of O(2). I re-evaluated the previous two experiment results of the product yield ratio [CO]/[CO(2)] vs. [O(2)](-1) in the Cl atom-initiated reaction, in light of the reaction mechanism involving prompt decomposition. The two results give 9.5 × 10(6) s(-1) and 1.08 × 10(7) s(-1) for the thermal decomposition rate and 47% and 41% for the fraction of prompt decomposition in the Cl atom-initiated reaction, in good agreement with the present trajectory calculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.