Abstract
Relative rate experiments have been carried out for three isotopologues of chloromethane and their reactions with Cl atoms and OH radicals. The OH and Cl reaction rates of CH2DCl and CHD2Cl were measured by long-path FTIR spectroscopy relative to CH3Cl at 298+/-2 K and 1013+/-10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least squares spectral fitting method including measured high-resolution infrared spectra as references. The relative reaction rates defined by alpha=klight/kheavy were determined to be kOH+CH3Cl/kOH+CH2DCl=1.41+/-0.05, kOH+CH3Cl/kOH+CHD2Cl=2.03+/-0.05, kCl+CH3Cl/kCl+CH2DCl=1.42+/-0.04, and kCl+CH3Cl/kCl+CHD2Cl=2.27+/-0.04. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3Cl were investigated further using variational transition state theory, and the results were compared to similar calculations performed for the CH4+OH/Cl reaction systems. The calculations show that the order of magnitude difference for the carbon-13 kinetic isotope effect in the OH reaction of CH3Cl compared to CH4 reported by Gola et al. (Atmos. Chem. Phys. 2005, 5, 2395) can be explained by the lower barrier to internal rotation of the OH radical in the transition state of the CH4+OH reaction than in the CH3Cl+OH reaction. The deuterium kinetic isotope effects can be explained in terms of combined variational effects and tunneling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.