Abstract
Functional differences between native and exotic species, estimated when species are grown alone or in mixtures, are often used to predict the invasion risk of exotic species. However, it remains elusive whether the functional differences estimated by the two methods and their ability to predict species invasiveness (e.g. high abundance) are consistent. We compiled data from two common garden experiments, in which specific leaf area, height, and aboveground biomass of 64 common native and exotic invasive species in China were estimated when grown individually (pot) or in mixtures (field). Exotic species accumulated higher aboveground biomass than natives, but only when grown in field mixtures. Moreover, aboveground biomass and functional distinctiveness estimated in mixtures were more predictive of species persistence and relative abundance in the field mixtures in the second year than those estimated when grown alone. These findings suggest that assessing species traits while grown alone may underestimate the competitive advantage for some exotic species, highlighting the importance of trait-by-environment interactions in shaping species invasion. Therefore, we propose that integrating multi-site or multi-year field surveys and manipulative experiments is required to best identify the key trait(s) and environment(s) that interactively shape species invasion and community dynamics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have