Abstract
Temperate North American forest communities have changed considerably in response to logging, fragmentation, herbivory, and other global change factors. Significant changes in the structure and composition of seemingly undisturbed Wisconsin forest communities have occurred over the past 50 years, including widespread declines in alpha and beta species diversity. To investigate how shifts in species composition have affected distributions of plant functional traits, we first compiled extensive data on understory plant species traits. We then computed community-weighted trait means and functional diversity metrics for communities in both the 1950s and 2000s. We examined how trait values and diversity varied across environmental gradients and among Wisconsin's four main ecoregions. Trait means and diversity values reflect conspicuous gradients in species composition, soils, and climatic conditions. Over the past 50 years, values of most traits have changed as communities shifted toward species with higher leaf nutrient levels and specific leaf area, particularly in the southern ecoregions. Trait richness and diversity have declined, particularly in historically species- and trait-rich unglaciated southwestern Wisconsin. Reductions in within-site trait diversity may be diminishing the ability of these forest communities to resist or resiliently respond to shifts in environmental conditions. Despite changes in trait and community composition, trait-environment relationships measured directly via fourth-corner analysis remain strong for most plant traits. Nevertheless, accelerating ecological change (including climate change) could outstrip the ability of plant species and traits to match their environment, particularly in more fragmented landscapes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have