Abstract
Symmetric loss functions are widely used in regression algorithms to focus on estimating the means. Huber loss, a symmetric smooth loss function, has been proved that it can be optimized with high efficiency and certain robustness. However, mean estimators may be poor when the noise distribution is asymmetric (even outliers caused heavy-tailed distribution noise) and estimators beyond the means are necessary. Under the circumstances, quantile regression is a natural choice which estimates quantiles instead of means through asymmetric loss functions. In this paper, an asymmetric Huber loss function is proposed to implement different penalty for overestimation and underestimation so as to deal with more general noise. Moreover, a smooth truncated version of the proposed loss is introduced to enhance stronger robustness to outliers. Concave-convex procedure is developed in the primal space with the proof of convergence to handle the non-convexity of the involved truncated objective. Experiments are carried out on both artificial and benchmark datasets and robustness of the proposed methods are verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.