Abstract
BackgroundSome individuals, even when heavily exposed to an infectious tuberculosis patient, develop neither active nor latent tuberculosis infection (LTBI). This ‘early clearance’ of Mycobacterium tuberculosis is associated with a history of bacillus Calmette–Guérin (BCG) vaccination. As BCG vaccination can boost innate immune responses through a process termed ‘trained immunity’, we hypothesize that BCG-induced trained innate immunity contributes to early clearance of M. tuberculosis. ObjectivesWe describe the epidemiological evidence and biological concepts of early clearance and trained immunity, and the possible relation between these two processes through BCG vaccination. SourcesRelevant data from published reports up to November 2018 were examined in the conduct of this review. ContentSeveral observational studies and one recent randomized trial support the concept that boosting innate immunity contributes to protection against M. tuberculosis infection, with BCG vaccination providing approximately 50% protection. The molecular mechanisms mediating early clearance remain largely unknown, but we propose that trained immunity, characterized by epigenetic and metabolic reprogramming of innate immune cells such as monocytes or macrophages, is at least partially responsible for eliminating the mycobacteria and inducing early clearance. ImplicationsFuture studies should examine if BCG revaccination increases early clearance of M. tuberculosis through induction of trained immunity. Epigenetic or metabolic modulation may further boost BCG-induced trained innate immunity to promote tuberculosis prevention. New tuberculosis vaccine candidates should also be examined for their capacity to improve protection against M. tuberculosis infection and induce trained immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.