Abstract
Expanding terminal scale and constructing multiple railway handling yards have become popular strategies for leading railway container terminals globally to cope with the ever-increasing handling volume. Although such an approach greatly enhances the terminal’s productivity, it also intensifies handling operations and introduces additional inter-yard interactions, complicating terminal management. To address these challenges, this paper investigates an integrated optimization approach for multi-yard railway container terminals, which feature both rail-road and rail-rail container transshipment operations. The train assignment plan for each yard and the handling capacity arrangement for each train are jointly optimized while considering inter-yard container transits, workload allocation for yards, and safety requirements in train shunting. This problem is formulated as a nonlinear programming model, with the objective to minimize operational delay and service time for each incoming train, and to minimize workload differences and container transit volume among yards. To efficiently solve this problem, this research develops an enhanced adaptive large neighborhood search (EALNS) heuristic, which includes several customized operators and feasibility repair methods, and is further enhanced with a local search method and backtracking mechanism compared to the standard ALNS framework. Computational experiments with different data scales and problem settings demonstrate the superiority of the EALNS in terms of solution quality and stability compared with three other solution methods. Additionally, practical insights for terminal operations are drawn through detailed analysis of different infrastructure configurations, transshipment train characteristics, and unit cost settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.