Abstract

Recently, radioresistance has become a major obstacle in the radiotherapy of cervical cancer. To demonstrate enhanced radiosensitization against radioresistant cervical cancer, radioresistant cervical cancer cell line was developed and the mechanism of radioresistance was explored. Due to the overexpression of (death receptor 5, DR5) in cervical cancer, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-overexpressed cervical cancer cell membrane-camouflaged Cu2−xSe nanomedicine (CCMT) was designed. Since the CCMT was encapsulated with TRAIL-modified cell membrane, it represented high target to cervical cancer cell and immune evasion. Furthermore, Cu2−xSe had the ability to scavenge glutathione (GSH) and produce ·OH with excess H2O2 in the tumor microenvironment. The presence of CCMT combined with radiation therapy could effectively increase the 1O2 produced by X-rays. In vitro and in vivo studies elaborated that CCMT exhibited excellent radiosensitization properties to reverse radiotolerance by scavenging GSH and promoting DNA damage, apoptosis, mitochondrial membrane potential damage and metabolic disruption. Collectively, this study suggested that the development of TRAIL-overexpressed cell membrane-camouflaged Cu2−xSe nanomedicine could advance future cervical cancer treatment and minimize the disadvantages associated with radiation treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.