Abstract
Social media users are generating data on an unprecedented scale. Distributed storage systems are often used to cope with explosive data growth. Data partitioning and replication are two interrelated data placement issues affecting the interserver traffic caused by user-initiated read and write operations in distributed storage systems. This paper investigates how to minimize the interserver traffic among a cluster of social media servers through joint data partitioning and replication optimization. We formally define the problem and study its hardness. We then propose a traffic-optimized partitioning and replication (TOPR) method to continuously adapt data placement according to various dynamics. Evaluations with real Twitter and LiveJournal social graphs show that TOPR not only reduces the interserver traffic significantly but also saves much storage cost of replication compared to state-of-the-art methods. We also benchmark TOPR against the offline optimum by a binary linear program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.