Abstract

Although the medium access control (MAC) signaling has been well-defined in the 3rd generation partnership project (3GPP) long term evolution (LTE) specifications, the scheduling algorithm crucial to guarantee QoS performance, still remains as open issues. In this article, a traffic-based queue-aware scheduling (TQS) algorithm is proposed for evolved nodeB's (eNB's) MAC scheduler in 3GPP LTE broadband wireless networks. The proposed TQS is divided into three sub-algorithms: firstly, the authors propose a traffic model construction (TMC) algorithm which can construct a discrete-time Markov-modulated Poisson process (dMMPP) to represent each flow. Secondly, a newly traffic state estimation (TSE) algorithm is designed to obtain the queue's analytical statistics. Thirdly, based on the derived results of TSE and the channel states, a scheduling action decision (SAD) algorithm is presented that can adaptively allocate bandwidth to flows by considering both queue states and spectrum efficiency. Simulation shows that the TMC and TSE algorithm can capture the fluctuation of traffic and queue accurately. Moreover, compared with a widely accepted traffic-based scheduling algorithm, the proposed TQS has better average queue length and overflow probability performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.