Abstract
Traffic Weaver is a Python package developed to generate a semi-synthetic signal (time series) with finer granularity, based on averaged time series, in a manner that, upon averaging, closely matches the original signal provided. The key components utilized to generate the signal encompass oversampling, recreating from average with a given strategy, stretching to match the integral of the original time series, interpolating, smoothing, repeating, applying trend, and adding noise. The primary motivation behind Traffic Weaver is to furnish semi-synthetic time-varying traffic in telecommunication networks, facilitating the development and validation of traffic prediction models, as well as aiding in the deployment of network optimization algorithms tailored for time-varying traffic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.