Abstract
Traffic rules violations in urban areas, which can cause traffic crashes and unsafe situations, are a major issue nowadays. The present paper aims to analyze the frequency of traffic violations in Tehran city, Iran, over a five-year period (March 2016- March 2021). The data is obtained via road traffic violation monitoring system which can capture and process various traffic violations. This database, containing about 97 million violations committed by about 16 million drivers, is explored applying three statistical approaches. In the first approach, some multiplicative SARIMA and Bayesian Spatio-temporal models are fitted to the monthly violations. Also, in the second approach, the K-means clustering algorithm is applied to discover homogeneous districts of Tehran Municipality regarding their number of violations and their number of violations per camera towers meter during the study. Finally, in the third approach, a random-effect zero-truncated one-inflated Poisson model is proposed to study factors affecting driver’s number of violations over time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have