Abstract
This study focuses on how to use multiple data sources, including loop detector counts, AVI Bluetooth travel time readings and GPS location samples, to estimate macroscopic traffic states on a homogeneous freeway segment. With a generalized least square estimation framework, this research constructs a number of linear equations that map the traffic measurements as functions of cumulative vehicle counts on both ends of a traffic segment. We extend Newell’s method to solve a stochastic three-detector problem, where the mean and variance estimates of cell-based density and flow can be analytically derived through a multinomial probit model and an innovative use of Clark’s approximation method. An information measure is further introduced to quantify the value of heterogeneous traffic measurements for improving traffic state estimation on a freeway segment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.