Abstract
Traffic flow prediction plays an indispensable role in the intelligent transportation system. The effectiveness of traffic control and management relies heavily on the prediction accuracy. The authors propose a model based on deep belief networks (DBNs) to predict the traffic flow. Moreover, they use Fletcher–Reeves conjugate gradient algorithm to optimise the fine-tuning of model's parameters. Since the traffic flow has various features at different times such as weekday, weekend, daytime and night-time, the hyper-parameters of the model should adapt to the time. Therefore, they employ the genetic algorithm to find the optimal hyper-parameters of DBN models for different times. The dataset from Caltrans Performance Measurement System was used to evaluate the performance of their models. The experimental results demonstrate that the proposed model achieved better performance in different times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.