Abstract
Traffic prediction is the key for Intelligent Transport Systems (ITS) to achieve traffic control and traffic guidance, and the key challenge is that traffic flow has complex spatial-temporal dependence and nonlinear dynamics. Aiming at the lack of the ability to model complex and dynamic spatial-temporal dependencies in current research, this paper proposes a traffic flow prediction model Attention based Graph Convolution Network (GCN) and Transformer (AGCN-T) to model spatial-temporal network dynamics of traffic flow, which can extract dynamic spatial dependence and long-distance temporal dependence to improve the accuracy of multistep traffic prediction. AGCN-T consists of three modules. In the spatial dependency extraction module, according to the similarity of historical traffic flow sequences of different loop detectors, an adjacency matrix for the road network is constructed based on a sequence similarity calculation method, Predictive Power Score (PPS), to express latent spatial dependency; and then GCN is used on the adjacency matrix to capture the global spatial correlation and Transformer is used to capture dynamic spatial dependency from the most recently flow sequences. And then, the dynamic spatial dependency is merged with the global spatial correlation to obtain the overall spatial dependency pattern. In the temporal dependency extraction module, the temporal dependency pattern of each traffic flow sequence is learned by the temporal Transformer. The prediction module integrates both patterns to form spatial-temporal dependency patterns and performs multistep traffic flow prediction. Four sets of experiments are performed on three actual traffic datasets to show that AGCN-T can effectively capture the dynamic spatial-temporal dependency of the traffic network, and its prediction performance and efficiency are better than existing baselines. AGCN-T can effectively capture the dynamics in traffic flow. In addition to traffic flow prediction, it can also be applied to other spatial-temporal prediction tasks, such as passenger demand prediction and crowd flow prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.