Abstract

In this work, we propose a mathematical model to represent traffic congestion in the street under some consideration. A congestion problem in a city highway becomes a critical issue since congestion at one point affected congestion propagation on the other points. We focus on the propagation of traffic propagation by adopting the concept of disease spread using the SIR model. We consider that the disease in traffic problems is congestion. Meanwhile, vehicles that enter the highway are susceptible to congestion. In contrast, vehicles free from traffic jams represent individuals free from disease. The SIR model can explain the spread of congestion by looking at the congestion variable as an infected variable. We discuss and analyze the existence and stability of the equilibrium points. The local stability equilibrium point is verified using the Routh-Hurwitz criteria. At the same time, the global stability is analyzed using Lyapunov function. The numerical simulation is provided in the last section to validate the discussion results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.