Abstract

We prove the global asymptotic stability of the disease-free and the endemic equilibrium for general SIR and SIRS models with nonlinear incidence. Instead of the popular Volterra-type Lyapunov functions, we use the method of Dulac functions, which allows us to extend the previous global stability results to a wider class of SIR and SIRS systems, including nonlinear (density-dependent) removal terms as well. We show that this method is useful in cases that cannot be covered by Lyapunov functions, such as bistable situations. We completely describe the global attractor even in the scenario of a backward bifurcation, when multiple endemic equilibria coexist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.