Abstract
Urban traffic condition usually serves as a basic information for some intelligent urban applications, e.g., intelligent transportation system. But the acquisition of such information is often costly due to the dependency on equipments such as cameras and loop detectors. Crowdsensing can be utilized to gather vehicle-sensed data for traffic condition estimation. This way of data collection is economic. However, it has the problems of data uploading efficiency and data usage effectiveness. To deal with these problems, in this paper, we take into account the topology of the road net. We divide the road net into Road Sections and Junction Areas. Based on this division, we introduce a two-phased data collection and processing scheme named RTS (Road Topology based Scheme). It leverages the correlations among adjacent roads. In a junction area, data collected by vehicles is first processed and integrated by a sponsor vehicle. This sponsor vehicle will calculate the traffic condition locally. Both the selection of the sponsor and the calculation of the traffic condition utilize the road correlation. The sponsor then uploads the local data to a server. By employing the inherent relations among roads, the server processes data and estimates traffic condition for road sections unreached by vehicular data in a global vision. We conduct extensive experiments based on real vehicle trace data. The results indicate that, our design can commendably handle the problems of efficiency and effectiveness in the vehicular-crowdsensing-data based traffic condition evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.