Abstract

In this paper, we introduce the notions of tradeoff curves, targeting and balancing in manufacturing systems to describe the relationship between variables such as work-in-process, lead-time and capacity. We consider multiproduct manufacturing systems modeled by open networks of queues and formulate the targeting (TP) and balancing (BP) problems as nonlinear programs. These formulations are based primarily on parametric decomposition methods for estimating performance measures in open queueing networks. Since TP and BP typically are hard to solve, we show that under fairly realistic conditions they can be approximated by easily solvable convex programs. We present heuristics to obtain approximate solutions to these problems and to derive tradeoff curves. We also provide bounds on the performance of the heuristics, relative to the approximation problems, and show that they are asymptotically optimal under mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call