Abstract

Decision trees are among the most interpretable and popular machine learning models that are used routinely in applications ranging from revenue management to medicine. Traditional heuristic methods, although fast, lack modeling flexibility for incorporating constraints such as fairness and do not guarantee optimality. Recent efforts aim to overcome these limitations using mixed-integer optimization (MIO) for better modeling flexibility and optimality, but speed remains an issue. In “Strong Optimal Classification Trees,” Aghaei, Gómez, and Vayanos use integer optimization and polyhedral theory to create an MIO-based formulation with a strong LO relaxation resulting in a 29% speed-up in training time compared with state-of-the-art MIO-based formulations, as well as up to an 8% improvement in out-of-sample accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call