Abstract

We elucidate the role of growth parameters (III/N flux ratio, temperature TG) on the morphological and structural properties, as well as compositional homogeneity and carrier localization effects of high In-content (x(In) > 0.75) In–polar InGaN films grown by plasma–assisted molecular beam epitaxy (PAMBE). Variations in III/N flux ratio evidence that higher excess of In yields higher threading dislocation densities as well as larger compositional inhomogeneity as measured by x-ray diffraction. Most interestingly, by variation of growth temperature TG we find a significant trade-off between improved morphological quality and compositional homogeneity at low–TG (∼450–550 °C) versus improved threading dislocation densities at high–TG (∼600–630 °C), as exemplified for InGaN films with x(In) = 0.9. The enhanced compositional homogeneity mediated by low–TG growth is confirmed by systematic temperature-dependent photoluminescence (PL) spectroscopy data, such as lower PL peakwidths, >5× higher PL efficiency (less temperature-induced quenching) and a distinctly different temperature-dependent S-shape behavior of the PL peak energy. From these, we find that the carrier localization energy is as low as ∼20 meV for low–TG grown films (TG = 550 °C), while it rises to ∼70 meV for high–TG grown films (TG = 630 °C) right below the onset of In–N dissociation. These findings point out that for the kinetically limited metal-rich PAMBE growth of high In-content InGaN a III/N flux ratio of ∼1 and low-to-intermediate TG are required to realize optically more efficient materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.