Abstract

Computational human head models have been used in electrophysiological studies, and they have been able to provide useful information that is unable or difficult to acquire from experimental or imaging studies. However, most of these models are purely volume conductor models that overlooked the electric excitability of axons in the white matter of the brain. This study combined a finite element (FE) model of electroconvulsive therapy (ECT) with a whole-brain tractography analysis as well as the cable theory of neuronal excitation. We have reconstructed a whole-brain tractogram with 500 neural fibres from the diffusion-weighted magnetic resonance scans, and extracted the information on electrical potential from the FE ECT model of the same head. We then calculated the first and second spatial derivatives of the electrical potential, which describes the activating function for homogenous axons and investigated sensitive regions of white matter activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.