Abstract

Aerospace bearings need to withstand the low-temperature environment of space, which will cause changes in the internal lubrication state of the bearings. This article aims to assess the traction properties of aerospace lubricants under low-temperature micro-oil droplet (hereinafter referred to as ‘micro-oil’) supply conditions, and provide a lubrication theoretical basis for studying the motion characteristics of aerospace bearings in a low-temperature environment. An experimental study on the low-temperature micro-oil traction properties of high-speed bearing lubricants was conducted on a specially designed aerospace bearing lubricant traction characteristic tester. A modified Herschel–Bulkley model (modified H–B model) was presented based on test data analysis, and the fitting results were compared with the Tevaarwerk–Johnson model (T–J model). The findings demonstrated that the traction coefficient of this lubricant decreased at a higher load and entrainment velocity, and decreased with a decreasing inlet oil temperature from 0 °C to −50 °C. The modified H–B model accurately fitted the test data and was suitable for the engineering traction coefficient calculation of lubricants and high viscosities at low temperatures. This paper can provide fundamental information for analyzing aerospace bearing friction torque variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.