Abstract

The worldwide air traffic underwent a rapid development in recent decades. Between the early 70s and the late 90s of the last century civil air traffic doubled every 15 years. The civil aviation market will continue to grow with 4% - 5% each year within the next 20 years. This enormous growth represents major challenges for airframers, engine makers, suppliers, airlines, air traffic management and ground infrastructure. In addition, the public debate on the worldwide civil air traffic is dominated by environmental and climate issues, even though only 2% of the man-made carbon dioxide (CO2) emissions are due to air transportation. Therefore the aerospace industry will have to focus on a low-emission and quite air traffic, and on the conservation of natural resources and our environment. The end-use consumer and environmental policy requirements for aircrafts of the next generation translate into components with improved efficiency and reliability. Rolling bearings are one of these components which significantly determine the reliability and mechanical efficiency of aerospace applications such as aircraft and rotorcraft engines and transmission systems. They have to withstand very demanding operating conditions. Especially main shaft bearings in modern aircraft engines experience high rotational speeds andtemperatures. Furthermore aerospace bearings have to meet the highest reliability standards and require low-weight design solutions. These operating conditions and requirements present a continuous challenge for improvements in all fields of bearing technology. This article presents solutions in aspects of materials, design, analysis, and surface technologies in order to meet the environmental, reliability, and economical requirements of advanced aerospace bearing systems. State of the art bearing analysis and advanced bearing design solutions contributing to lower friction power losses and increased systems efficiency are discussed. Weight, functional, and maintenance benefits are presented with the example of highly integrated aircraft engine main shaft bearings. It is also shown that the progress in bearing materials and surface technology development is the basis for weight and friction energy reduction in aerospace bearing systems.

Highlights

  • Today’s world aircraft fleet consists of 20,000 airplanes in service

  • In order to comply with the challenges connected to a fast growing market and emission effects on the earth’s climate as described above, the European Commission described in their vision “Flightpath 2050” the economical, social and environmental goals for the European aviation in the year 2050 [6]

  • The mechanical efficiency of aircraft engines and rotorcrafts is one important key to achieve the goals set by politics and OEM’s

Read more

Summary

Introduction

Today’s world aircraft fleet consists of 20,000 airplanes in service. Considering a projected 4% - 5% growth per annual passenger kilometer and an estimated fleet replacement of 40% until the year 2035, the world airplane fleet will double to a total amount of approximately 40,000 aircraft. In order to comply with the challenges connected to a fast growing market and emission effects on the earth’s climate as described above, the European Commission described in their vision “Flightpath 2050” the economical, social and environmental goals for the European aviation in the year 2050 [6]. Examples of these goals are reductions of 75% CO2, 90% NOx, and 65% noise compared to capabilities of typical new aircraft in 2000. In the following chapter new environmental friendly aircraft systems concepts and the derived requirements to aerospace sub-systems are presented

Current and Future High Efficient Aircraft Systems
Aircraft Developments
Propulsion and Drive Train Developments
Requirements for High Efficient Rolling Bearings for Aerospace Applications
High Speed Bearing Analysis
Aerospace Bearing Design
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call