Abstract
Tractability properties of various notions of discrepancy have been intensively studied in the last decade. In this paper we consider the so-called weighted star discrepancy which was introduced by Sloan and Woźniakowski. We show that under a very mild condition on the weights one can obtain tractability with s -exponent zero ( s is the dimension of the point set). In the case of product weights we give a condition such that the weighted star discrepancy is even strongly tractable. Furthermore, we give a lower bound for the weighted star discrepancy for a large class of weights. This bound shows that for such weights one cannot obtain strong tractability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.