Abstract

We study the problem of constructing shifted rank-1 lattice rules for the approximation of high-dimensional integrals with a low weighted star discrepancy, for classes of functions having bounded weighted variation, where the weighted variation is defined as the weighted sum of Hardy–Krause variations over all lower-dimensional projections of the integrand. Under general conditions on the weights, we prove the existence of rank-1 lattice rules such that for any δ > 0 , the general weighted star discrepancy is O ( n − 1 + δ ) for any number of points n > 1 (not necessarily prime), any shift of the lattice, general (decreasing) weights, and uniformly in the dimension. We also show that these rules can be constructed by a component-by-component strategy. This implies in particular that a single infinite-dimensional generating vector can be used for integrals in any number of dimensions, and even for infinite-dimensional integrands when they have bounded weighted variation. These same lattices are also good with respect to the worst-case error in weighted Korobov spaces with the same types of general weights. Similar results were already available for various special cases, such as general weights and prime n , or arbitrary n and product weights, but not for the most general combination of n composite, general weights, arbitrary shift, and star discrepancy, considered here. Our results imply tractability or strong tractability of integration for classes of integrands with finite weighted variation when the weights satisfy the conditions we give. These classes are a strict superset of those covered by earlier sufficient tractability conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.