Abstract
We investigate L2-approximation problems in the worst case setting in the weighted Hilbert spaces H(KRd,α,γ) with weights Rd,α,γ under parameters 1≥γ1≥γ2≥⋯≥0 and 1<α1≤α2≤⋯. Several interesting weighted Hilbert spaces H(KRd,α,γ) appear in this paper. We consider the worst case error of algorithms that use finitely many arbitrary continuous linear functionals. We discuss tractability of L2-approximation problems for the involved Hilbert spaces, which describes how the information complexity depends on d and ε−1. As a consequence we study the strongly polynomial tractability (SPT), polynomial tractability (PT), weak tractability (WT), and (t1,t2)-weak tractability ((t1,t2)-WT) for all t1>1 and t2>0 in terms of the introduced weights under the absolute error criterion or the normalized error criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.