Abstract
Glioblastoma (GB) is a malignant brain tumour that is challenging to treat, often relapsing even after aggressive therapy. Evaluating therapy response relies on magnetic resonance imaging (MRI) following the Response Assessment in Neuro-Oncology (RANO) criteria. However, early assessment is hindered by phenomena such as pseudoprogression and pseudoresponse. Magnetic resonance spectroscopy (MRS/MRSI) provides metabolomics information but is underutilised due to a lack of familiarity and standardisation. This study explores the potential of spectroscopic imaging (MRSI) in combination with several machine learning approaches, including one-dimensional convolutional neural networks (1D-CNNs), to improve therapy response assessment. Preclinical GB (GL261-bearing mice) were studied for method optimisation and validation. The proposed 1D-CNN models successfully identify different regions of tumours sampled by MRSI, i.e., normal brain (N), control/unresponsive tumour (T), and tumour responding to treatment (R). Class activation maps using Grad-CAM enabled the study of the key areas relevant to the models, providing model explainability. The generated colour-coded maps showing the N, T and R regions were highly accurate (according to Dice scores) when compared against ground truth and outperformed our previous method. The proposed methodology may provide new and better opportunities for therapy response assessment, potentially providing earlier hints of tumour relapsing stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.