Abstract

Geochronologic studies of high-pressure/low-temperature rocks can be used to determine the timing and rates of burial and exhumation in subduction zones by dating different stages of the pressure–temperature history. In this study, we present new in situ UV laser ablation 40Ar/39Ar phengite ages from a suite of lawsonite blueschist- and eclogite-facies rocks representing different protoliths (metabasalt, metasediment), different structural levels (within and outside of a high-strain zone), and different textural positions (eclogite pod core vs. margin) to understand the timing of these events in an exhumed Neo-Tethyan subduction zone (Sivrihisar Massif, Tavsanli Zone, Turkey). Weighted mean in situ 40Ar/39Ar ages of phengite from the cores of lawsonite eclogite pods (90–93 Ma) are distinctly older than phengite from retrogressed, epidote eclogite (82 ± 2 Ma). These ages are interpreted as the age of peak and retrograde metamorphism, respectively. Eclogite records the narrowest range of ages (10–14 m.y.) of any rock type analyzed. Transitional eclogite- and blueschist-facies assemblages and glaucophane-rimmed lawsonite + garnet + phengite veins from eclogite pod margins record a much wider age range of 40Ar/39Ar ages (~20 m.y.) with weighted mean ages of ~91 Ma. Blueschists and quartzites record more variable 40Ar/39Ar ages that may in part be related to structural position: samples within a high-strain zone at the tectonic contact of the HP rocks with a meta-ultramafic unit have in situ UV laser ablation 40Ar/39Ar ages of 84.0 ± 1.3–103.7 ± 3.1 Ma, whereas samples outside this zone range to older ages (84.6 ± 2.4–116.7 ± 2.7 Ma) and record a greater age range (22–38 m.y.). The phengite ages can be correlated with the preservation of HP mineral assemblages and fabrics as well as the effects of deformation. Collectively, these results show that high-spatial resolution UV laser ablation 40Ar/39Ar phengite data, when considered in a petrologic and structural context, may document prograde (burial) and retrograde (exhumation) stages of subduction metamorphism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call