Abstract

The ionospheric dynamics is highly influenced by the solar radiation. During a solar eclipse, the moon occults the solar radiation from reaching the ionosphere, which may drastically affect the variability of the ionosphere. The variability of total electron content (TEC) observed by dual frequency Global Positioning System (GPS) receivers has made it possible to study effects of solar eclipse on the ionosphere. Total eclipse occurred on November 03, 2013, and the maximum amplitude was visible at Owiny in northern Uganda. Ionospheric behavior during this eclipse was analysed by using TEC data archived at Mbarara (MBAR), Malindi (MAL2), Eldoret (MOIU), and Kigali University (NURK) International GPS Satellite (IGS) stations. TEC variations of four consecutive days were used to study instantaneous changes of TEC during the eclipse event. The results generally show TEC decrease at the four stations. However, a maximum perturbation amplitude of ≥20 TECU was observed at MAL2 (18:00–20:00 UT) which is further south of the equator than the other stations. TEC enhancement and depletion were observed during the totality of the eclipse at MOIU, MBAR, NURK, and MAL2 (13:00–15:00 UT). This study found out that the ionospheric TEC over East Africa was modified by wave-like energy and momentum transport and obscuration of the solar disc due to the total solar eclipse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.