Abstract

The IPCC climate models predict, for the Maghreb countries, lower rainfall and increased aridity. Current observations in the three countries of central Maghreb (Morocco, Algeria, and Tunisia) are not consistent with these predictions. To demonstrate this new trend, a detailed regional analysis of rainfall evolution is conducted. This investigation is based on the calculation of the reduced centered index and the chronological graphical method of processing information (MGCTI) of “Bertin matrix” type. The results show extreme variability of this parameter and the severe past drought (more intense for Morocco, in which the drastic conditions from the seventies are observed). The results also show the beginning of a gradual return to wetter conditions since the early 2000s in Algeria and Tunisia and from 2008 for Morocco (this trend is confirmed by recent agricultural production data in 2011/2012 and 2012/2013).

Highlights

  • Climate change is today acknowledged by a large part of the scientific community

  • The results of statistical and graphical processing of central Maghreb pluviometry show strong variability and an organisation structured into three main climatic periods (Figure 2)

  • We may say that the climate change observed during the last years is characterised by a rainfall return but with a far greater intensity

Read more

Summary

Introduction

Climate change is today acknowledged by a large part of the scientific community. In its latest report, the IPCC [1] in 2013 evaluates the average trend of world temperature over the period 1880–2012 equal to 0.85∘C with a degree of uncertainty ranging between 0.65∘C and 1.06∘C. The World Meteorological Organisation [3] considers the period 2011– 2015 as the hottest on record, and the year 2015 as the hottest since modern observations began in the late 1800s. On a global scale, the increase in temperatures is unquestionable, the evolution of world pluviometry is much more contrasting as it is subject to a strong spatiotemporal variability. Despite this feature, and considering temperature rise, an increase in rainfall is likely to occur in certain region of the world favorable to such climate evolution. The results of several studies on rainfall evolution in many areas of the globe, as it happens in North Africa, show that climate change translates into wetter conditions [5, 6] as well as into a rainfall increase and repetition of extreme events (perceptible in the recent decades 1991–2010) [4, 7,8,9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call