Abstract

Tracking the dynamic changes in the structure of kidney bean protein isolate (KPI) during extreme pH-shifting can reveal the different mechanisms that drive the unfolding and refolding of the protein from a conformational perspective and elucidate the relationship between its structure and function. The secondary and tertiary structures of KPI were analyzed using multispectral techniques. The results showed that acidic-shifting affected the hydrophobic interactions of KPI molecules, whereas alkaline-shifting affected hydrogen bonding and electrostatic interactions of the molecules. Therefore, alkaline-shifting was more likely to affect KPI conformation. SEM revealed that pH-shifting transformed the sheet structure of KPI into spheres and rods; moreover, it improved the surface hydrophobicity, thermal stability, emulsification, foaming, and antioxidant properties of KPI. In summary, each pH-shifting stage disrupts a different intermolecular force, resulting in protein conformational diversity, while structural changes further affect function. Therefore, pH-shifting treatment broadens the applications scope of KPI in the food industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call