Abstract

Measurements of cell lineages are central to a variety of fundamental biological questions, ranging from developmental to cancer biology. However, accurate lineage tracing requires nearly perfect cell tracking, which can be challenging due to cell motion during imaging. Here we demonstrate the integration of microfabrication, imaging, and image processing approaches to demonstrate a platform for cell lineage tracing. We use quantitative phase imaging (QPI), a label-free imaging approach that quantifies cell mass. This gives an additional parameter, cell mass, that can be used to improve tracking accuracy. We confine lineages within microwells fabricated to reduce cell adhesion to sidewalls made of a low refractive index polymer. This also allows the microwells themselves to serve as references for QPI, enabling measurement of cell mass even in confluent microwells. We demonstrate application of this approach to immortalized adherent and nonadherent cell lines as well as stimulated primary B cells cultured ex vivo. Overall, our approach enables lineage tracking, or measurement of lineage mass, in a platform that can be customized to varied cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.