Abstract
Visual multi-target tracking technology is a challenging problem in computer vision. This study proposes a novel approach for multi-target tracking based on min-cost network flows in RGB-D data with tracking-by-detection scheme. Firstly, the moving objects are detected by fusing RGB information and depth information. Then, we formulate the multi-target tracking problem as a maximum a posteriori (MAP) estimation problem with specific constraints, and the problem is converted into a cost-flow network. Finally, using a min-cost flow algorithm, we can obtain the tracking results. Extensive experimental results show that the proposed algorithm greatly improves the robustness and accuracy and outperforms the state-of-the-art significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.