Abstract
We propose a network flow based optimization method for data association needed for multiple object tracking. The maximum-a-posteriori (MAP) data association problem is mapped into a cost-flow network with a non-overlap constraint on trajectories. The optimal data association is found by a min-cost flow algorithm in the network. The network is augmented to include an Explicit Occlusion Model(EOM) to track with long-term inter-object occlusions. A solution to the EOM-based network is found by an iterative approach built upon the original algorithm. Initialization and termination of trajectories and potential false observations are modeled by the formulation intrinsically. The method is efficient and does not require hypotheses pruning. Performance is compared with previous results on two public pedestrian datasets to show its improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.