Abstract

The biological chemistry of toxic heavy metals, such as Cd (II), has become an active area of research due to connections with increased oxidative stress, cytotoxicity, and human/animal carcinogenicity. In this study, scanning electrochemical microscopy (SECM) was used as a noninvasive technique to monitor membrane permeability of single live human bladder cancer cells (T24) subjected to exposure of Cd (II) at various concentrations. The addition of a membrane permeable redox mediator, ferrocenemethanol (FcMeOH), in combination with depth scan imaging provided probe approach curves (PACs) to reveal changes in membrane homeostasis. To demonstrate the strength of SECM as a bioanalytical technique for cell physiology and pathology, we tested responses of live cells after 1h incubations with various concentrations of Cd (II). For the first time, a trend in membrane permeability of Cd (II) treated live T24 cells was discovered. Dependent on the incubation concentration, the trend displayed an initial decrease in membrane permeability coefficient from 75μm/s for control cells to 25μm/s for cells incubated with 75μM Cd (II). This was followed by an eventual return to the permeability coefficient of control cells (75μm/s) with further increases in Cd (II) exposure. The cells were found to respond at as little as 10μM Cd (II) concentrations. This work further demonstrates the use of SECM as a bioanalytical technique to monitor cell physiology and topography. A greater insight into the complex mechanisms behind Cd (II) toxicity is anticipated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call