Abstract

Cd2+ is carcinogenic to both humans and experimental animals. We present quantitative time-course imaging of Cd2+-induced variation in the membrane permeability of single live human bladder cancer cells (T24) to ferrocenemethanol using scanning electrochemical microscopy (SECM). High temporal resolution combined with non-invasive nature renders a time-lapse SECM depth scan, a promising method to quantitatively investigate the effectiveness, kinetics, and mechanism of metal ions based on the responses of single live cells in real time. Under unstimulated conditions, T24 cells have constant membrane permeability to ferrocenemethanol of approximately 5.0×10−5m/s. When cadmium is added in-situ to T24 cells, the membrane permeability increases up to 3.5×10−4m/s, allowing more flux of ferrocenemethanol to the ultramicroelectrode tip. This suggests an increased spreading between the phospholipid heads in the cytoplasmic membrane. Membrane permeability might be used as a measure to probe cell status in practical intoxication cases. The methodology reported here can be applied to many other metals and their interactions with extracellular biomolecules, leading insights into cell physiology and pathobiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.