Abstract

Parabolic equation is utilized to represent the curve of a long span cable. The relationship among cable force, cable end displacement and cable length variation is derived by using parabolic equation. Dynamics model of cable-driven robots is established on the basis of cable mechanical equation, which shows that the resultant cable force acting on the end-effector is directly related to cable length and end-effector pose. A linear expansion of the mechanical equation is carried out to facilitate introducing the mechanical model into the control design, then the relationship between the cable force increment acting on end-effector and the cable length variation and the end-effector displacement is obtained. The cable force on end-effector can be expressed as the addition of its desired value and a corresponding increment resulting from the error of cable length and the error of end-effector pose. In the control design, a feedback controller is first designed for the cable force by using Lyapunov method. Then, by utilizing the above-mentioned incremental relationship, a nonlinear controller based on the end-effector pose feedback is constructed, in which the cable length adjustment quantity serves as the controller for output control. It is essentially a nonlinear PD controller with compensation terms. Controller parameters can be adjusted automatically along with the variation of system state. Numerical examples validate the control algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call